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Abstract 

The North – West Corner Rule for obtaining an initial basic feasible solution to a transportation problem 
disregards costs.  This disregard necessarily leads to a high number of iterations to optimality. 

A search for a way to incorporate costs in the use of the North-West Corner Rule led to experimenting with 
the creation of a north-west south-east low cost broad band orientation in the transportation cost matrix.  
The transformed table was tested by applying the North-West Corner Rule on it.  The findings were very 
encouraging though not conclusive because of the small sample size.  Practitioners may want to adopt this 
innovation to confirm its effectiveness. 

Key words: basic, feasible, initial, innovative, optimal, solution. 

1. Introduction 
In its simplest form the transportation problem is that of determining the least cost schedule of 
transporting a homogenous commodity from m sources to n destinations.  Manually, the problem is solved 
in two stages.  First an initial basic feasible solution is obtained.  In the second stage some iterations are 
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performed until an optimal schedule is achieved.  With a few exceptions the various manual methods for 
solving the problem differ in the way the initial basic feasible solution is obtained.  The computations 
towards optimality use the same method. 
 
Currently the North-West Corner Rule for obtaining the initial solution is the least efficient method; the 
method leads to a relatively very high number of iterations to optimality.  In this paper an innovative 
method for applying the North-West Corner Rule is introduced and its impact on the efficiency of the 
method is tested. 

2. Literature Review 
The transportation problem was first stated by Hitchcock (1941).  The solution to this problem was first 
offered by George B. Dantzig and published in Koopman’s (1951) monograph 13.  The procedure that 
Dantzig used to obtain an initial basic feasible solution was later termed the North-West Corner Rule by  
Charmes and Cooper (1954 to 1955).   Dantzig’s initial solution ignored costs.  But he developed an iterative 
procedure for computing the optimal solution which is still in use today.  He considered that the optimal 
solution would be obtained in at most m + n – 1 iterations where m is the number of sources and n is the 
number of destinations. 
 

Several practitioners have developed alternative methods for determining an initial basic feasible solution 
which takes costs into account.  Their methods are considered in this article.  The most popular of these are 
the methods by Vogel (1958) and Russell (1961).  These two methods as well as the other methods that will 
be applied in this article use Dantzig’s procedure to move the solution to optimality.  

 Assume that m sources have ia units of a homogenous commodity that is to be transported to n 

destinations which require jb  units of the commodity.  Let ijc  be the unit cost of transporting a commodity 

from source i to destination j, and let ijx units be associated with the cost ijc .  Then the total cost of 

transporting ijx units from source i to destination j is ijij xc .  The cost of transporting the entire commodity 

is to be minimized.  The problem formulation is the following. 
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Generally this problem has a solution If  
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The problem can be solved as a linear programming problem with nm   equations in nm  variables.  If we 

add up the n equations in (2) and subtract the sum of any m – 1 equations in (1) we get a result that equals 
the remaining equation in (1).  This means that this one remaining equation is redundant in the system of 
m+n equations and so can be eliminated.  Therefore we have only m+n - 1 independent equations in mn 

unknowns.  Solving these equations algebraically would give us at most m+n -1 positive values ijx together 

with at least mn - (m+n -1) value 0ijx . 

The transportation problem is solved in two stages.  First, an initial basic feasible solution is obtained using 
any of the methods described below.  In the second stage at least one optimality test is conducted.  If the 
current solution is not optimal a computation that improves the solution is done.  This procedure is 
repeated until an optimal solution is obtained. 

The methods for finding an initial basic feasible solution are well documented.  They are summarized 

below.  Before any method is applied the problem is reduced to a rectangular array of m by n unit costs ,ijc  

a right margin column of supplies ia  and a bottom margin row of demands jb . 

Using the North-West Corner Rule method, an amount 11x units of the commodity is allocated at cell (1,1) 

in such a way that 1a is exhausted or 1b is exhausted.  If 111 ax  , row 1 is crossed and an allocation of an 

amount ),min( 11221 abax   is made at cell (2,1).  If 111 bx  column 1 is crossed and an allocation of an 

amount ),min( 21112 bbax   is made at cell (1,2).  If 1111 bax  , either the row or the column is 

crossed and a reduced demand or supply of 0 is entered in the margin of the uncrossed column or row.  

Thus 1111 aborba  may be 0.  Subsequent allocations are made using the same logic.  The last 

allocation is made at cell (m, n).  Altogether there will be m + n -1 {= (m -1) + n or m + (n -1)} allocations. 

Using Vogel’s approximation method, for each row and each column of the table the difference between 
the lowest cost and the next lowest cost is computed and recorded under a penalty column or penalty row 

in the margins.  Then in the row or column with the highest penalty an allocation of ijx units of the 

commodity is placed in the cell which has the lowest cost ijc where ijx exhausts ia supply or jb demand.  If 

ia  units are exhausted row i is crossed.  Demand jb is reduced to ij ab   and column penalties are 

updated.  If jb units are exhausted column j is crossed.  Demand ia is reduced to ji ba  and row penalties 

are updated.  Ties are broken arbitrarily.  The process is repeated until the allocation process is complete. 
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Using Russell’s approximation method, for each row the highest cost ijc is identified and recorded on the 

right margin under iu .  For each column the highest cost ijc is identified and recorded on the bottom 

margin under jv .  Then for each cell (i,j),  ijji cvu  is computed and the result entered  in cell (i,j) and 

encircled.  After the process is completed, an allocation ijx of the commodity is made in the cell with the 

highest encircled value.  If iij ax   row i is crossed, the demand jb is reduced to ij ab  , the highest 

remaining ijc in each column is identified and sv j ' updated.  If instead jij bx    is allocated to cell (i,j), 

column j is crossed, ia is reduced to ji ba  , the highest remaining ijc in each row is identified and su i '
updated.  Ties are broken arbitrarily.  The process is repeated until the allocation process is completed. 

 

Using the Least Cost (also called Matrix Minima) method the smallest ijc in the table is identified and an 

amount ijx allocated at cell (i,j)  If iij ax  , row i is crossed and jb is reduced to ij ab  .  If instead jij bx 

column j is crossed and ia reduced to ji ba  .  Ties are broken arbitrarily.  The smallest remaining ijc is 

identified and the process repeated until the allocation process is complete. 

 

In the Row Minima method, the smallest cost c1j in row 1 determined and an allocation ijx made at cell 

(1,j).  If 11 ax j  , the first row is crossed, demand jb is reduced to 1ab j  and row 2 considered.  If 

jj bx 1 , column j is crossed and 1a is reduced to jba 1 .  In this case the remaining lowest cost jc1 is 

identified and an allocation made at the corresponding cell.  Ties are broken arbitrarily.  The process is 
continued until all the allocations are made. 

 

In the Column Minima method, the smallest cost 1ic is identified and an amount 1ix allocated to cell (i,1).  If

ii ax 1 , row i is crossed and b1 reduced to .1 iab   Column 1 is reconsidered and the process is repeated 

with the remaining columns.  If instead 11 bxi  , column 1 is crossed and ia reduced to 1bai  .  In this case 

the smallest remaining cost 2ic  is identified and an allocation made at cell (i,2).  Ties are broken arbitrarily.  

The process is continued until the allocation is complete.   

The above methods for obtaining an initial basic feasible solution have been summarized from Gass, S.I. 
(2010), Gupta and Man Mohan (1974), Hillier and Lieberman (1995), Imam et. al. (2009) and Taha (2008).  
The procedure for computations to optimality is the same; therefore it is not being considered here. 

Since the North-West Corner Rule method disregards the costs ijc : its initial solution has a high cost.  

Consequently, the number of iterations to optimality is usually high.  Vogel’s and Russell’s approximation 
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methods provide the least number of iterations to optimality.  For these two methods sometimes the initial 
basic feasible solution is optimal. 

Many articles have been published in which Vogel’s approximation method has been investigated for 
improvement.  These include articles by Shimshak, Kaslik and Barclay (1981), Mathirajan and Meenaksli 
(2004), and Korukoglin and Balli (2011).  However ways of improving the efficiency of the North-West 
Corner Rule method by considering costs have not been reported. 

3. Materials and Methods 
Four sample transportation problems were selected at random from Gupta and Man Mohan, Hillier and 
Lieberman, and Taha.  The costs cij, supplies ai demands bj are given in tables 1a, 2a, 3a, and 4a. Using these 
tables, the North-West Corner Rule, Vogel’s approximation, Russell’s approximation, Least Cost, Row 
Minima, and Column Minima methods were used to find the initial basic feasible solution.  Next, tables 1a, 
2a, 3a, and 4a were innovatively transformed to tables 1b, 2b, 3b and 4b respectively, through row or 
column manipulation.  The manipulation was designed to create tables with low cost north-west south-east 
broad band orientations.  The North-West Corner Rule method was then applied to test the innovation’s 
efficiency.  For each method used, optimality tests were conducted and where necessary further 
computations were made until optimal allocations were obtained. 
 

4. Results and Discussion 
The number of iterations to optimality for each problem and each method are shown in table 5.  The table 
shows that innovative North - West Corner Rule method is second only to Vogel’s Approximation method 
out of the seven methods considered. Therefore an informed and imaginative manipulation of the rows or 
columns of the transportation cost matrix makes the North – West Corner Rule method quite efficient.  

5. Conclusion and Recommendation 

Since the North-West Corner Rule is simple to understand and to apply, it is popular.  But the large number 
of iteractions disadvantages it.  It is recommended to intintively manipulate the rows or columns before 
applying the method.  Many more examples should be solved to establish the superiority of the new 
method to the other methods apart from Vogel’s. 

 

Table 1a.  Cost, supply and demand figures for sample problem 1. 

   
Destination 

  
  

1 2 3 4 Supply 

 
1 1 2 1 4 30 

Source 2 4 2 5 9 50 

 
3 20 40 30 10 20 

       
 

Demand 20 40 30 10 
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Table 1b.  A reproduction of table 1a figures but with columns 1 and 3 interchanged. 

 
 

  
Destination 

  

  
3 2 1 4 Supply 

 
1 1 2 1 4 30 

Source 2 5 2 4 9 50 

 
3 30 40 20 10 20 

       
 

Demand 30 40 20 10 
  

Table 2a.  Cost, supply and demand figures for sample problem 2. 

   
Destination 

  

  
1 2 3 4 Supply 

 
1 21 16 25 13 11 

Source 2 17 18 14 23 13 

 
3 32 27 18 41 19 

       
 

Demand 6 10 12 15 
  

Table 2b.  A reproduction of table 2a figures but with column displacement. 

   
Destination 

  

  
4 1 2 3 Supply 

 
1 13 21 16 25 11 

Source 2 23 17 18 14 13 

 
3 41 32 27 18 19 

       
 

Demand 15 6 10 12 
  

Table 3a.  Cost, supply and demand figures for sample problem 3. 

   
Destination 

  

  
1 2 3 4 Supply 

 
1 1 4 6 5 14 

Source 2 6 3 4 2 5 

 
3 2 9 8 7 16 

       
 

Demand 15 10 6 4 
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Table 3b.  A reproduction of table 3a figures but with rows 2 and 3 interchanged. 

   
Destination 

  
  

1 2 3 4 Supply 

 
1 1 4 6 5 14 

Source 3 2 9 8 7 16 

 
2 6 3 4 2 5 

       
 

Demand 15 10 6 4 
  

Table 4a.  Cost, supply and demand figures for sample problem 4. 

   
Destination 

   
  

1 2 3 4 5 Supply 

 
1 4 9 8 10 12 24 

Source 2 6 10 3 2 3 18 

 
3 3 2 7 10 3 20 

 
4 3 5 5 4 8 16 

        
 

Demand 10 20 10 18 20 
  

Table 4b.   A reproduction of table 4a figures with rows displaced. 

   
Destination 

   
  

1 2 3 4 5 Supply 

 
3 3 2 7 10 3 20 

Source 1 4 9 8 10 12 24 

 
4 3 5 5 4 8 16 

 
2 6 10 3 2 3 18 

        
 

Demand 10 20 10 18 20 
  

Figure 1.  Solutions to problem 1 

Initial allocation                 Total Cost                Status 
NWCR x11 = 20 x12 = 10 x22 = 30 x23 = 20 x33 = 10 x34  = 10 600 not optimal 
INWCR/Vogel’s x13 = 30 x21 = 10 x22 = 40 x31 = 10 x34 = 10 (x23/x11= 0 )

1 450 Optimal 
Russell’s x11 = 10 x13 = 20 x22 = 40 x23 = 10 x31 = 10 x34  = 10 460 not optimal 
LC/RM x11 = 20 x13 = 10 x22 = 40 x23 = 10 x33 = 10 x34  = 10 560 not optimal 
CM x11 = 20 x13 =10 x22 = 30 x23 = 20 x32 = 10 x34  = 10 650 not optimal 
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Second allocation                                                                                                    Total cost               Status 

NWCR x11 = 10 x12 = 20 x22 = 20 x23 = 30 x31 = 10 x34  = 10 540 not optimal 
Russell’s x11 =   0 x13 = 30 x21 = 10 x22 = 40 x31 = 10 x34 = 10 450 Optimal 
LC/RM/CM x11 = 10 x13 = 20 x22 = 40 x23 = 10 x31 = 10 x34  = 10 460 not optimal 
 

Third allocation                                                                                       Total cost              Status 

NWCR x11 = 10 x13 = 20 x22 = 40 x23 = 10 x31 = 10 x34  = 10 460 not optimal 
LC/RM/CM x11 =   0 x13 = 30 x21 = 10 x22 = 40 x31 = 10 x34 = 10 450 Optimal 
 

Fourth allocation                                                                                                     Total cost       Status 

NWCR x11 = 0 x13 = 30 x21 = 10 x22 = 40 x31 = 10 x34  = 10 450 Optimal 
Note 1:  X23 = 0 for INWCR, and x11 = 0 for Vogel’s method. 

Solutions to problem 2 
 
Initial allocation                  Total cost  Status 
   
NWCR x11 = 6  x12  = 5 x22 = 5  x23 = 8  x33 = 4  x34  = 5 1095 not optimal 
INWCR/Vogel’s 
Russell’s 

x14 = 11  x21 = 6 x22 = 3  x24 = 4  x32 = 7  x33  =  12 796 optimal 

LM/RM x14 = 11  x21 = 1 x23 = 12  x31 = 5  x32 = 10  x34  =  4 922 not optimal 
CM x12= 10  x14 = 1 x21 = 6  x23 = 7  x33 = 5  x34  = 14 1037 not optimal 
 

Second allocation                                                                                       Total cost     Status 

NWCR x11 =  6 x14 = 5 x22 = 10 x23 = 3 x33 = 9 x34  = 10 985 not optimal 
LC/RM x14 = 11 X21 = 6 x23 = 7 x32 = 10 x33 = 5 x34  = 4 867 not optimal 
CM x12 = 3 X14 = 8 x21 = 6 x22 = 7 x33 = 12 x34  = 7 883 not optimal 
 

Third allocation                                                                                          Total cost     Status 

 NWCR x11 =  3 x14 = 8 x21 = 3 x22 = 10 x33 = 12 x34  = 7 901 not optimal 
LC/RM x14 = 11 x12 = 6 x23 = 3 x24 = 4 x32 = 10 x33  = 9 811 not optimal 
CM x14 = 11 x21 = 6 x22 = 7 x32 = 3 x33 = 12 x34  = 4 832 not optimal 
 

Fourth allocation                                                                          Total cost       Status 

NWCR x14 =  11 x21 = 6 x22 = 7 x32 =3 x33 = 12 x34  = 4 832 not optimal 
LC/RM/CM x14 =  11 x21 = 6 x22 = 3 x24 = 4 x32 = 7 x33 = 12 796  optimal 
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Fifth allocation               Total cost     Status 

NWCR x14 = 11 x21 = 6 x22 = 3 x24 = 4 x32 = 7 x33  = 12 796 optimal 
 
Solutions to problem 3 
 
Initial allocation                           Total cost        Status 
   
NWCR x11 = 14 x21 = 1 x22 = 4 x32 = 6 x33 = 6 x34  = 4 162 not optimal 
INWCR x11 = 14 x23 = 1 x24 = 4 x31 = 1 x32 = 10 x33 = 5 158 not optimal 

Vogel’s x12 = 10 x13 = 4 x23 = 1 x24 = 4 x31 = 15 x33  = 1 114 optimal 
Russell’s x12 = 5 x13 = 6 x14 = 3 x22 = 5 x31 = 15 x34  = 1 123 not optimal 
LC/RM/CM x11 = 14 X22 =1 x24 = 4 x31 = 1 x32 = 9 x33 = 6 156 not optimal 
 

Second allocation                                               Total cost       Status 

NWCR x11 = 14    x22  = 5 x31 = 1 x32 = 5  x33 = 6 x34  = 5 152 not optimal 
INWCR x11 = 4    x12 = 10 x23 = 1 x24 = 4  x31 = 11 x33  =  5 118 not optimal 
Russell’s x12 = 8    x13 = 6 x22 = 2 x24 = 3  x31 = 15 x34  =  1 117 not optimal 
LC/RM/CM x11= 5    x12 = 9 x22 = 1 x24 = 4  x31 = 10 x33  = 6 120 not optimal 
 

Third allocation                                                                                                      Total cost     Status 

NWCR x11 = 5  x12  = 9 x22 = 1 x24 = 4 x31 = 10 x33  = 6 120 not optimal 
INWCR x12 = 10  x13 = 4 x23 = 1 x24 = 4 x31 = 15 x33  =  1 114 not optimal 
Russell’s x12 = 9  x13 = 5 x22 = 1 x24 = 4 x31 = 15 x33  =  1 115 not optimal 
LC/RM/CM x11= 4  x12 = 10 x23 = 1 x24 = 4 x31 = 11 x33  = 5 118 not optimal 
 

Fourth allocation                                                                                               Total cost        Status 

NWCR x11 =  5 x12 = 9 x22 = 1 x24 =4 x31 = 10 x33  = 6 120 not optimal 
Russell’s LC/RM/CM x12 =  10 x13 = 4 x23 = 1 x24 = 4 x31 = 15 x33 = 1 114  optimal 

 

Fifth allocation                                                                                                Total cost       Status 

NWCR x11 = 4 x12 = 10 x23 = 1 x24 = 4 x31 = 11 x33  = 5 118 not optimal 
 
 
Sixth allocation                                                                                                Total cost      Status 

NWCR x12 = 10 x13 = 4 x23 = 1 x24 = 4 x31 = 15 x33  = 1 114  Optimal 
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Solutions to problem 4 

Initial allocation                                                                                                                                            Total cost         Status 

NWCR x11 = 10 x12 = 14 x22 = 6 x23 = 10 x24 = 2 x34  = 16 x35 = 4 x45 = 16 560 not optimal 
INWCR x12 = 10 x13 = 10 x14 = 4 x25 = 18 x31 = 10 x32 =  10 x44 = 14 x45 = 2 386 not optimal 
Vogel’s x11 = 10 x13 = 10 x14 = 2 x15 = 2 x35 = 18 x32 = 20 x35 = 0 x44= 16 322 not optimal 
Russell’s x11 = 10 x12 = 2 x13 = 10 x14 = 2 x25 = 18 x32  = 18 x35 = 2 x44 = 16 318 not optimal 
LC x13 = 4 x15 =20 x24 = 18 x25 = 0 x25 = 20 x35 = 0 x41 = 10 x43 = 6 408 not optimal 
RM x11 = 10 x13 = 10 x14 = 4 x24 = 14 x25 = 4 x32 = 20 x35 = 0 x45 = 16 368 not optional 
CM x14 = 4 x15 = 20 x23= 10 x24 = 8 x31 = 10 x32 = 10 x42 = 10 x44 = 6 450 not optional 
 

Second allocation                                                                                                     Total cost    Status 

NWCR x11 = 10 x22 = 14 x23 = 10 x24 = 8 x34 = 10 x35 = 10 x42 = 6 x45 = 10 452 not optimal 
INWCR/RM x11 = 10 x13 = 10 x14 = 4 x25 = 18 x31 = 0 x32 =  20 x44 = 14 x45 = 2 326 not optimal 
Vogel’s x11 = 10 x12 = 2 x13 = 10 x14 = 2 X25 = 18 x32 =  18 x35 = 2 x44= 16 318 not optimal 
Russell’s x11 = 10 x12= 4 x13 = 10 x24 = 2 x25 = 16 x32  =  16 x35 = 4 x44 = 16 316 not optimal 
LC x13 = 10 x15 = 14 x24 = 12 x25 = 6 x32 = 20 x35  =   0 x41 = 10 x44 = 6 384 not optimal 
CM x11 = 4 x15 = 20 x23 = 10 x24 = 8 x31 = 6 x32  =  14 x42 = 6 x44 = 10 418 not optimal 

 

Third allocation                                                                                                      Total cost      Status 

NWCR x11 = 10 X12 = 4 x13 = 10 x23 = 0 x34 = 18 x35 = 20 x42 = 16 x45 = 0 332 not optimal 
INWCR/RM x11 = 10 x12 = 2 x14 = 10 x14 = 2 x35 = 18 x32 =  18 x35 = 2 x44 = 16 318 not optimal 
Vogel’s x11 = 10 X12 = 4 x13 = 10 x24 = 2 x25 = 16 x32 =  16 x35 = 4 x44=  16 316 optimal 
LC x11 = 10 x13 = 10 x15 = 4 x24 = 2 x25 = 16 x32  =  20 x35 = 0 x44 = 16 324 not optimal 
CM x11 = 10 x15 = 14 x23 = 10 x24 = 2 x25 =  6 x31  =   0 x32 = 20 x44 = 16 364 not optimal 

 

Fourth allocation                                                                                                    Total cost     Status   

NWCR x11 = 10 x12 = 4 x13 = 10 x24 = 18 x25 = 0 x35 = 20 x42 = 16 x45 = 0 332 not optimal 
INWCR/LC/RM x11 = 10 x12 = 4 x13 = 8 x24 = 2 x25 = 16 x32 = 16 x35 = 4 x44 = 16 316 optimal 
CM x11 = 10 x15 = 14 x23 = 10 x24 = 2 x25 = 6 x32 = 20 x35 = 0 x44 = 16 364 not optimal 
 

Fifth allocation                                                                                                          Total cost    Status 

NWCR x11 = 10 x12 = 4 x13 = 10 x24 = 18 x25 = 0 X35 = 20 x42 = 16 x44 = 0 332 not optimal 
CM x11 = 10 x13 = 10 X15 = 4 x24 = 2 x25 = 16 x32= 20 x35 = 0 x44 = 16 324  not optimal 

 

Sixth allocation                                                                                                 Total cost   Status 

INWCR/CM x11 = 10 x12 = 4 x13 = 10 x24 = 2 x25 = 16 x32 = 16 x35 = 4 x44 = 16 316  optimal 
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Table 5:   Number of iterations to optimality for each problem and each method. 

Problem NWCR INWCR Vogel’s Russell’s LC RM CM 
1 4 1 1 2 3 3 3 
2 5 1 1 1 4 4 4 
3 6 3 1 4 4 4 4 
4 6 4 3 2 4 4 6 

 

Legend:  NWCR – North – West Corner Rule 

 INWCR  - Innovative North – West  Corner Rule 

 LC – Least Cost 

 RM – Row Minima 

 CM – Column Minima 
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