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ABSTRACT 
 

We consider all positive integers that are expressible as a sum of three squares. For n 
positive integer, let P3(N) denote the number of partitions of n as sum of three squares, that is the 
number (a, b, c) of integers satisfying n= a2 + b2 + c2   

where a ≥ b ≥ c ≥ 0. From these positive integers, we further reduce the numbers and 
emphasize those that are uniquely represented as a sum of three squares in only one way.  

Through the use of imaginary quadratic field properties and Dirichlet class number formula, 
we are able to deduce that all these n positive integers that are represented in only one way will 
either be included in the 12 positive integers in the imaginary quadratic field with odd discriminant 
and small class number of 1 or 2 such that these n’s are element of Z+ and n ≡8 3 or be one of the 21 
positive integers n such that n is in Z+ and n ≡8 1,2,5,6.  

With these results, the researcher encourages the readers to pursue similar studies and to 
look deeper into the two consequences of the Three-Square Theorem like the Theorem of Gauss:  
Every positive integer n can be expressed as the sum of three triangular numbers and the theorem of 
Lagrange’s Four-Square Theorem: Every positive integer n can be expressed as a sum of four 
squares.  

Likewise, modeling problems on natural occurrences should be conducted to make 
mathematics more appealing and practical especially to non-mathematics practitioners.  

 
  Keywords: Positive Integers, Expressible, Essentially, Sum of Three Squares.   
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Section 1. Introduction 
 

The set S consisting of those positive integers n which are uniquely expressible in the 
form n = a2 + b2 + c2, a ≥ b ≥ c ≥ 0, is considered. Since n ϵ S if and only if 4n ϵ S, we may 
restrict attention to those n not divisible by 4. Classical formulas and the theorem that there are 
only finitely many imaginary quadratic fields with given class number imply that there are only 
finitely many n ϵ S with n 0 (mod 4). More specifically, from the existing knowledge of all 
the imaginary quadratic fields with odd discriminant and class number 1 or 2 it is readily 
deduced that there are precisely twelve positive integers n such that n ϵ S and n ≡ 3 (mod 8). To 
determine those n ϵ S such that n ≡ 1, 2, 5, 6 (mod 8) requires the determination of the 
imaginary quadratic fields with even discriminant and class number 1, 2, or 4. While the latter 
information is known empirically, it has not been proved that the known list of 33 such fields is 
complete. If it is complete, then our arguments show that there are exactly 21 positive integers n 
such that n ϵ S and n ≡ 1, 2, 5, 6(mod 8). 
 
1.1 Statement of the Problem 

This study aimed to discuss and give a detailed proof of theorem 1 and theorem 2 to show 
Positive Integers Expressible as a Sum of Three Squares in Essentially Only One Way.  
Specifically, it aimed to: 
1. deduce that there are precisely twelve positive integers n such that n ϵ S and       n ≡ 3 (mod 8) 

from existing knowledge on imaginary quadratic fields with odd discriminant and class number 
1 or 2 it is readily; and 

2. determine those n ϵ S such that n ≡ 1, 2, 5, 6 (mod 8) requires the determination of the 
imaginary quadratic fields with even discriminant and class number 1, 2, or 4. 

 
1.2 Significance of the Study 
 In this paper we discuss one of the consequences of the effective determination of the 
imaginary quadratic fields with small class number.  
 If n  is a positive integer, let P3(n) denote the number of partitions of n as a sum of three 
squares, i.e., the number of triples (a, b, c) of integers satisfying 
                                       n = a2 + b2 + c2, a ≥ b ≥ c ≥ 0    (1) 
 Now if a multiple of 4 is expressible as a sum of three squares, all the squares must be even 
such that P3(4n) = P3(n). Also, P3(n) in our discussion will be assumed that n ≠ 0 (mod 4) in effect 
that n ≡ 1, 2, 3, 5, 6, 7 (mod 8). 
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1.3 Research Methodology 

1.3.1 Research Design    

We consider all positive integers that are expressible as a sum of three squares. For a n 
positive integer, let P3(N) denote the number of partitions of n as sum of three squares, that is the 
number (a,b,c) of integers satisfying 

    n = a2 + b2 + c2  
where a ≥ b ≥ c ≥ 0. From these positive integers, we further reduce the numbers and emphasize 
those that are uniquely represented as sum of three squares in only one way. 

Let us show the integers 1-50 as sum of three squares as a basis to illustrate further the 
content of the paper. 

1    =    12 + 02 + 02 
2    = 12 + 12 + 02 
3    = 12 + 12 + 12 
4    = 22 + 02 + 02 
5    = 22 + 12 + 02 
6    = 22 + 12 + 12 
7    = N/A 
8    = 22 + 22 + o2 
9    = 22 + 22 + 12   =  32 + 02 + 02 
10 = 32 + 12 + 02 
11    =    32 + 12 + 12 
12    = 22 + 22 + 22 
13    = 32 + 22 + 02 
14    = 32 + 22 + 12 
15    = N/A 
16    = 42 + 02 + 02 
17    = 32 + 22 + 22   =  42 + 12 + 02        
18    = 32 + 32 + 02   =  42 + 12 + 12       
19    = 32 + 32 + 12 
20    = 42 + 22 + 02 
21    = 42 + 22 + 12 
22    = 32 + 32 + 22  
23    =  N/A  
24    = 42 + 22 + 22 
25    = 42 + 32 + 02  = 52 + 02 + 02 

26    = 42 + 32 + 12  = 52 + 12 + 02 
27    = 32 + 32 + 32       =   52 + 12 + 12         
28    = N/A 
29    = 52 + 22 + 02       =  42 + 32 + 22 
30    = 52 + 22 + 12 
31    =   N/A 
32    = 42 + 42 + 02 
33    = 42 + 42 + 12    =   52 + 22 + 22 
34    = 42 + 32 + 32     =  52 + 32 + 02 
35    = 52 + 32 + 12      
36    = 42 + 42 + 22    =  62 + 02 + 02 
37    = 62 + 12 + 02 
38    =   52 + 32 + 22     =  62 + 12 + 12 
39    = N/A 
40    = 62 + 22 + 02 
41    = 42 + 42 + 32 = 52 + 42 + 02              
        = 62 + 22 + 12   
42    = 52 + 42 + 12   
43    = 52 + 32 + 32   
44    = 62 + 22 + 22   
45    = 52 + 42 + 22  = 62 + 22 + 12   
46    = 62 + 32 + 22   
47    = N/A 
48    = 42 + 42 + 42 
49    = 72 + 02 + 02 
50    = 52 + 42 + 32 = 52 + 52 + 02                  
        = 72 + 12 + 02   

 
Notice that the squares of integers can either be 0, 1, 4 (mod 8).  



ISSN: 2411-5681                                                                                                   www.ijern.com 
 

114 
 

Next, is to partition the integers into equivalence classes modulo 8: 
    [0], [1], [2], [3], [4], [5], [6], [7]  

 [0] = 8k, k ϵ Z 
          8k2 = 64, k2 ≡ 0(mod 8) 
 
 [1] = 8k + 1, k ϵ Z 
          (8k + 1)2 = 64, k2 + 16k +1 ≡ 1(mod 8) 

[2] = 8k + 2, k ϵ Z 
         (8k + 2)2 = 64, k2 + 16k +4 ≡ 4(mod 8) 
[3] = 8k + 3, k ϵ Z 
         (8k + 3)2 = 64, k2 + 16k + 9 ≡ 1(mod 8) 
[4] = 8k + 4, k ϵ Z 
         (8k + 4)2 = 64, k2 + 16k + 16 ≡ 0(mod 8) 
[5] = 8k + 5, k ϵ Z 
         (8k + 5)2 = 64, k2 + 16k + 25 ≡ 1(mod 8) 
[6] = 8k + 6, k ϵ Z 
         (8k + 6)2 = 64, k2 + 16k + 36 ≡ 4(mod 8) 
[7] = 8k + 7, k ϵ Z 

                                 (8k + 7)2 = 64, k2 + 16k + 49 ≡ 1(mod 8)  
Then, we can write the equivalence classes as sum of three squares. 
 

0 ≡ (mod 8) as 4 + 4 + 0 or 0 + 0 + 0 
1 ≡ (mod 8) as 1 + 0 + 0 or 4 + 4 + 1 
2 ≡ (mod 8) as 1 + 1 + 0  
3 ≡ (mod 8) as 1 + 1 + 1  
4 ≡ (mod 8) as 4 + 0 + 0 or 4 + 4 + 4 
5 ≡ (mod 8) as 4 + 1 + 0  
6 ≡ (mod 8) as 4 + 1 + 1  
7 ≡ (mod 8) as N/A 
 

The integer 7 cannot be written as a sum of three integers from 0, 1, 4, hence, 7 cannot be 
written as a sum of three squares.            

 Let us try to show that n is expressible if and only if 4n is also expressible. 
             (         ) If n is expressible then 4n is also expressible. 
    n  =  a2 + b2 + c2    
                 4n  = 4( a2 + b2 + c2) 
                        = 4a2 + 4b2 + 4c2    
                        =  (2a)2 + (2b)2 + (2c)2    

(         ) If 4n is expressible then n is also expressible. 
4n  =  x2 + y2 + z2. 
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Since 4n will either belong to 0(mod8) or 4(mod8). Observe that the sets of 
three squares of 0(mod8) and 4(mod8) are all divisible by 4. Thus, we can write it as: 

    n = +  +  

    n = +  +  

Since x2 + y2 + z2 ∈ { 0, 4} mod 8, then x, y, z is either in [0], [2], [4], [6] and 
this implies that x, y, z is even. Therefore x/2, y/2, z/2 QED. 

Imaginary Quadratic (IQ) Field 
Set of rational numbers where the square of each of the element is irrational.  
*Say F is an imaginary quadratic field inside C such that  

F= Q(√ n )= a + b√ n : a, b ∈  Q, n ∈ Z  except { 0, 1} square free. 
 

Discriminant 
If n is an element of IQ, then determinant of n is n if n ≡ 4 =1, Otherwise it is 4n.  
Consider the imaginary quadratic field F:  

D F  = n if n =1(mod 4) 
    = 4n if n =2(mod 4) 
Class Number  

=  4 if F = Q( √− 1)  
w (F)  =  4n if F = Q( p − 3)  

=  2 otherwise  
 

Through the use of imaginary quadratic field properties and Dirichlet class number formula, 
we are able to deduce that all these n positive integers that are represented in only one way will 
either be included in the 12 positive integers in the imaginary quadratic field with odd discriminant 
and small class number of 1 or 2 such that these n’s are element of Z+ and n ≡8 3 or be one of the 21 
positive integers n such that n is in Z+ and n ≡8 1,2,5,6. 

We denote r3(n) to be the number of triples (i, j, k) of integers such that: 
i2 + j2 + k2 = n     (2) 

with no restriction on the signs or relative sizes of i, j, k. Each solution of (1) gives rise to several 
solutions of (2) by permutations of the summands and changes of signs. 
                                            ρ (a, b, c) = 6   if a > b = c = 0 
                                            ρ (a, b, c) = 8   if a = b = c = 0 
                                            ρ (a, b, c) = 12              if a = b > c = 0 
                                            ρ (a, b, c) = 24              if a > b > c = 0 or 

        if a > b = c > 0 or 
                                                    if a = b > c > 0 
                                             ρ (a, b, c) = 48              if a > b > c > 0 
 

For ρ (a, b, c) = 6  if a > b = c = 0 
→ (± a2 ± 02 ± 02), (± 02 ± b2 ± 02), (± 02 ± 02 ± c2) 
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For ρ (a, b, c) = 8 if a = b = c =0       
 → ± a2 ± a2 ± a2       
For ρ (a, b, c) = 12 if a = b>c=0      

→ (± a2 ± a2 ± 02), (± a2 ± 02 ± a2), (± 02 ± a2 ± a2) 
For ρ (a, b, c)=24 if a>b>c=0 or a>b= c>0 or a = b>c>0 

→ (± a2 ± b2 ± 02), (± a2 ± 02 ± b2), (± b2 ± a2 ± 02) 
→ (± b2 ± 02 ± a2), (± 02 ± a2 ± b2), (± 02 ± b2 ± a2) 

For ρ (a, b, c) = 48  if a > b > c > 0 
→ (± a2 ± a2 ± b2), (± a2 ± b2 ± a2), (± b2 ± a2 ± b2), (± a2 ± b2 ± b2) 
For most values of n, only the last case ρ (a, b, c) = 48 occurs and thus for these 

values of n the ratio r3(n)/P3(n) is exactly 48. In any case, we have 
r3(n) ≥ 48P3(n) 

Now, we introduce another notation for the paper. Let R3(n) be defined as the 
number of triples (i, j, k) of integers that is: 

n = i2 + j2 + k2 
              gcd(i, j, k) 

We use a formula to get the r3(n) by using the R3(n).  
   
 
1.4 Definition of Terms 

 
Algebraic number theory. Algebraic number theory is a branch of number theory that uses the 
techniques of abstract algebra to study integers, rational numbers, and their generalizations. 
Number-theoretic questions are expressed in terms of properties of algebraic objects such as 
algebraic number fields and their rings of integers, finite fields, and function fields. 

Corollary. Corollary is the name given to a theorem that follows because of another theorem. 

Definitions. Definition in mathematics has been the stipulative conception, according to which a 
definition merely stipulates the meaning of a term in other terms which are supposed to be already 
well known. The stipulative conception has been so dominant and accepted as unproblematic that 
the nature of definition has not been much discussed, yet it is inadequate. 

Lemmas. Lemmas are baby theorems. It is a name for a theorem that serves as a component or 
steppingstone to reach the desired (main) result, the main result or result of bringing together of 
these lemmas usually are named theorems by authors typically.  

Number theory. Number Theory (or arithmetic or higher arithmetic in older usage) is a branch of 
pure mathematics devoted primarily to the study of integers. German mathematician Carl Friedrich 
Gauss (1777–1855) said, "Mathematics is the queen of the sciences—and number theory is the 
queen of mathematics." 
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r 3(n )= 

r 3 (n )= 

 
 

R 3(n )=48 
 
 

R 3 (n )=24 

 

h (− n ) 
 

w (− n )  
h (− 4n ) 
 
w ( − 4n ) 

 
 

ifn ≡ 3(mod 8) 
 
 

ifn ≡ 1, 2, 5, 6(mod 8) 

 

Square Free Number.  A number is said to be square free if no prime factor divides it more than 
once, i.e., largest power of a prime factor that divides n is one. First few square free numbers are 1, 
2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, … 

Theorem. Theorems are logically equivalent to the axioms that need to be proven. 

 
Section 2. RESULTS AND DISCUSSIONS 
 

When n is square free, we use the Dirichlet class number formula, i.e. 
  
 

where h(d) is class number and w(d) is the number of units of the imaginary quadratic field 
of discriminant d. 

We start by the Legendre’s Square Theorem where if n ≡8 3, then n is expressible as a sum 
of 3 squares. Also, n ≡8 7 is not expressible as sum of 3 squares. Moreover, if n ≡8 4, then n is 
expressible as sum of 3 squares which implies that n = 4n1, n1 is expressible as sum of 3 squares and 
hence, we now have n ≡8 1,2,5,6 is possible by sum of 3 squares. 

Furthermore, we remove integers that can be expressed as sum of 3 squares in more than one 
way. By the quadratic field, we first get the quadratic fields with even and odd discriminant so that 
the integers expressible as sum of three squares with perfect squares will be removed.”... if d is the   
of Q(d), then d is non-square...” 

 
LEMMA 1. If n ≡ 8 1, 2, 3, 5, 6, then R 3( n ) > 0,i.e. n can be expressed as a sum of three squares 
without common factor. 

Let x,y,z be integers. Suppose an integer n > 4 is a square-free integer that can be expressed 
as sum of three square numbers. 

The number of solutions of x2 + y2 + z2 = n without restriction on the signs or relative sizes 
of x, y, and z is given by r3(n). 
Proof:  

=24h(−n)                     for n ≡ 3(mod8) 
       r3(n)               =12h(−4n)           for n ≡ 1,2,5,6 (mod 8) 

       =0                                for n ≡ 7 (mod 8) 
Furthermore, we can conclude that if n is square-free, r3(n) = R3(n) since if gcd(x, y, z)=1, 

then we cannot write n = x2 + y2 + z2 as n = a2(x2 + y2 + z2) where (ax)2, (ay)2, (az)2 = x2, y2, z2 
respectively. 

 
LEMMA 2. If n = 1, 2, 3, 5, 6 (mod 8) and n is divisible by p2, where p is an odd prime, then P3(n) > 
1. 

Proof:  

          Through the use of Lemma 1, we know that R 3(n) > 0, hence we know that  
 there exist integers x, y, z where x 2 + y 2 + z 2 = n, x ≥ y ≥ z ≥ 0, gcd (x, y, z) =1  
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             Now, by assumption that n is divisible by p2 in effect sing Lemma 1 again,              
             We have R3(n / p2) >0 and this implies that there exists a, b, c with 
                                   a2 + b2 + c2 = n, a ≥ b ≥ c ≥ 0, gcd (a, b, c) =1  
             Thus, we can conclude that (x, y, z) and (pa, pb, pc) are different solutions. 
  

LEMMA 3. If n is a square free, then.    
                                     r 3 (n)= R 3(n) =24h (− n)  if n>3, n ≡8 3 
                                     r 3 (n)= R 3(n) =12(− 4n)  if n>1, n ≡8 1, 2, 5, 6 
 Proof: 

It can be observed that since we are talking about imaginary quadratic field, we  
 have w (d)=2.  Now, using the equations 

r 3(n)= R3(n)=48   h(−n)         if n≡3(mod 8) 
                                                                    w(−n)  
 
                 r3(n)  = R3(n)=24   h(−4n)        if n≡ 1, 2, 5, 6(mod 8) 
                                w(−4n)  
     

We will substitute the w(d)=2, hence get the case for r3 (n), in effect,   
 r3(n)= R3(n)=24 h(−n)  if n> 3, n ≡8 3 

                r3(n)=   R3(n)=12(− 4n)   if n> 1, n ≡8 1, 2, 5, 6  
LEMMA 4. If n is a square free and n≡8 3, then h(−n) ≤ 2P3(n). If n isa square free and n≡8 1, 2, 5, 6, 
then h(−4n) ≤ 4P3(n) 
Proof: 

We have by Lemma 3 and equation r3(n) ≥ 48P3(n). Then, we will have  
24 h(−n) =    r3(n) ≥ 48P3(n) 

Now, we can write this as 
24 h(−n) ≥ 48P3(n) 

Simplifying, we will get 
h(− n) ≥ 2P3(n)          for n ≡ 3(mod 8) 

 
Class Numbers 
  The case for n ≡ 1, 2, 5, 6(mod8) is similar. We have: 

12 h(−n) = r3(n) ≥ 48P3(n) 
12 h(−n) ≥ 48P3(n) 
h(−n) ≥ 4P3(n) 

 
Section 3. SUMMARY AND RESEARCH DIRECTION 
 
Summary 

Here is a list of some class numbers: 
Class Number 1: 3, 4, 7, 8, 11, 19, 43, 67, 163 
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Class Number 2: 5, 6, 10, 13, 15, 22, 35, 37, 51, 58, 91, 115, 123, 187, 235, 267, 403, 427 
Class Number 3: 23, 31, 59, 83, 107, 139, 211, 283, 307, 331, 379, 499, 547, 643, 883, 907 
Class Number 4: 14, 17, 21, 30, 33, 34, 39, 42, 46, 55, 57, 70, 73, 78, 82, 85, 93, 97, 102, 130, 133, 142, 
155, 177, 190, 193, 195, 203, 219, 253 
  
Conclusions 

The main result of the paper is the following theorems. 
Theorem 1. If n≡8 3, then P3(n)=1 if and only if n is one of the twelve numbers as listed: 3, 11, 19, 35, 
43, 67, 91, 115, 163, 235, 403, 427 
Proof: 

If n≡3 (mod8) but n is not square free, then P3(n) > 1 by lemma 2. If n ≡ 3(mod8) and n is square 
free, then we use Lemma 4 to those with class numbers of 1 or 2. 

By previous studies, there are six known square free positive integers n where the class number 
h(−n) is 1 and n ≡ 3(mod 8). These are 3,11,19,43,67,163. If n is one of the five numbers 11 = 32 + 212, 
19 = 2 ∗ 32 +12, 43 = 52 + 2 ∗ 32, 67 = 72 + 2 ∗ 32, 163 = 2 ∗ 92 + 12, then the first equation has only one 
solution and r3(n) = 24. Hence, these 5 integers are included in the said 13 integers of the theorem. 

Based on previous paper on complex quadratic fields with class number two, there are ten square 
free positive integers n with n ≡ 3 (mod 8) in effect 35, 51, 91, 115, 123, 187, 235, 267, 403, 427. We can 
observe that there is exactly one solution for these numbers. 

Furthermore, a > b > c > 0. This is the last case hence r3(n) = 48. Thus, these 6 integers are also 
included on the list. 

The remaining 4 integers 51=72 +2 ∗ 12, 123=112 +2 ∗ 12, 187=132+2 ∗ 32, 267=132 +2 ∗ 72 has 
P3(n)=2 since r3(n)=24 P3(n)=48 meaning they can be written as sum of three squares in more than one 
way. Hence, they are discarded. 

Therefore, we only have twelve integers: 3, 11, 19, 35, 43, 67, 91, 115, 163, 235, 403, 427 that 
can be essentially written in one way if  n ≡ 3(mod 8).  

Therefore, Theorem1 has been proved.  
 
Theorem 2. If n ≡8 1, 2, 5, 6 and if P3(n) = 1, then neither (a) n is one of the twenty-one number listed 
below or (b) n>106, n is square free, and h(−4n) = 4. (1, 2, 5, 6, 10, 13, 14, 21, 22, 30, 37, 42, 46, 58, 70, 
78, 93, 133, 142, 190, 253) 
Proof: 

If n ≡ 1,2,5,6 (mod 8) but n is not square free, then P3(n) by lemma 2. If n≡1,2,5,6 (mod 8) and n 
is square free, using lemma 4 implies that we only need to look at n with h(−4n) ≤ 4. 

By previous studies, the only square free positive integers n with n≡1,2,5,6 (mod 8) and h(−4n) = 
1 are n = 1,2. Obviously P3(1) = p3(2) = 1. 

Also, there are exactly seven square free positive integers n which n≡1,2,5,6 (mod 8) and h(−4n) 
= 2, namely, 5 = 22 + 12, 6 = 22 + 2 ∗ 12, 10 = 32 + 12, 13=32 + 22, 22 =2. 32 +22, 37 = 62 + 12, 58 = 72 + 
32. 

There are no square free positive integers n such that n ≡ 1,2,5,6 (mod 8) and h(−4n) = 3. 
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Also, there are exactly 24 square free positive integers such that n ≡ 1,2,5,6 (mod 8), h(−4n) = 4 
and 1 < n < 106. Twelve (12) of these values of n are 14=32+22+12, 21 = 42+22+12, 30 = 52+2+12, 42 = 
52+42+12, 46 = 62+3, 70, 78, 93,133, 142, 190, 253. 

For these values of n, we have r3 = 48 then by Lemma 4, P3(n) = 1. 
The other 12 are 17 = 32+22+22, 33 = 52+22+22, 34 = 52+32+02, 57, 73, 82, 85, 97, 102, 130, 177, 

193. 
For these integers, r3(n) = 24, then by Lemma 4 we know that r3(n) = 24P3(n) = 48, then P3(n) = 

2. Thus, Theorem 2 was proven. 
 
Recommendations 

With these results, the researcher encourages the readers to pursue similar studies and to 
look deeper into the two consequences of the Three-Square Theorem like the Theorem of Gauss:  
Every positive integer n can be expressed as the sum of three triangular numbers and the theorem of 
Lagrange’s Four-Square Theorem: Every positive integer n can be expressed as a sum of four 
squares. 

Likewise, modeling problems on natural occurrences should be conducted to make 
mathematics more appealing and practical especially to non-mathematics practitioners. 
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