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ABSTRACT 
 
This study detects outliers in a bivariate data by using identification of influential observation and 
scatter diagram. The study shows how an observation that causes the least squares point estimates 
of a Regression model to be substantially different from what it would be if the observation were 
removed from the data set. A Boilers data with a dependent variable Y (Man-Hours) and four 
independent variables X1 (Boiler Capacity), X2 (Design Pressure), X3 (Boiler Type), X4 (Drum 
Type) were used. The analysis of the Boilers data reviewed an unexpected group of outliers. 
MINITAB (version 11.0) software was used to analyze all the regression models. Microsoft Excel 
(version 2003) software was used in plotting the scatter plots. The results from the findings showed 
that an observation can be outlying with respect to its Y (dependent) value or X (independent) value 
or both values and yet influential to the data set.  
 
Keywords: Detecting Outliers, Scatter Diagram, Identification of Influential observation and 
Regression Analysis. 
 
 



ISSN: 2201-6333 (Print) ISSN: 2201-6740 (Online)                                                     www.ijern.com 
 

2 
 

1 INTRODUCTION 
 
 “Outliers” are unusual data values that occur 
almost in all research projects involving data 
collection. This is especially true in 
observational studies where data naturally 
take on very unusual values, even if they 
come from reliable sources. Although 
definitions varies. Outliers are observations 
that have extreme value relations. An outlier 
is generally considered to be a data point that 
is far outside the norm for a variable or 
population Jarrell, (1994); Rasmussen, (1988) 
and Stevens (1984). 
 
Hawkin described an outlier as an observation 
that “deviates so much from other 
observations as to arouse suspicion that it was 
generated by a different mechanism”. Outliers 
have also been defined as values that are 
“dubious in the eyes of the researcher” Dixon, 
(1950) and contaminants Wainer, (1976). 
 
In the presence of outliers, any statistical test 
based on sample means and variance can be 
distorted. For instance, estimated regression 
coefficients that minimize the Sum of Squares 
for Error (SSE) are very sensitive to outliers. 
There are several problematic effects of 
outliers which include: 
(a) Bias or distortion of estimates 
(b) Inflated sum of squares (which make 

it unlikely to partition the source of 
variation in the data into meaningful 
components). 

(c) Distortion of p-values (statistical 
significance, or lack thereof can be 
due to the presence of a few-or even 
one-unusual data value). 

(d) Faulty conclusions (it’s quite possible 
to draw false conclusions if you 
haven’t looked for indications that, 
there was any thing unusual in the 
data). Thus, the need of screening data 
for Univariate, bivariate and 
multivariate outliers is important in 
these days of ubiquitous computing. 

2 CAUSES OF OUTLIERS 
Outliers can arise from several different 
mechanisms or causes. Anscombe (1960) 
sorts outliers into two major categories: those 
arising from errors in the data and those 
arising from the inherent variability of the 
data. 
 
NOTE: Not all outliers are illegitimate 
contaminants and not all illegitimate scores 
show up as outliers, Barnett and Lewis, 
(1994). It is therefore important to consider 
the range of causes that may be responsible 
for outliers in a given set of data. 

 Outliers from data errors: outliers are 
often caused by human error, such as 
errors in data collection, recording or 
entry. Data from an interview can be 
recorded incorrectly, or mistaken upon 
data entry. Errors of this nature can 
often be corrected by returning to the 
original documents or even the 
subjects if necessary and possible and 
entering the correct value. 

 Outliers from intentional or motivated 
mis-reporting: There are times when 
participants purposefully report 
incorrect data to experimenters or 
surveyors. A participant may make 
conscious effort to sabotage the 
research Huck, (2000), or may be 
acting from other motives. Social 
desirability and self-presentation 
motives can be powerful. This can 
also happen for obvious reasons when 
data are sensitive (e.g. teenagers 
under-reporting drug or alcohol use, 
misreporting of sexual behaviour). If 
all but few teens under-report a 
behaviour (for example, the frequency 
of sexual fantasies teenage male 
experience) the few honest responses 
might appear to be outliers when in 
fact they are legitimate and valid 
scores. Motivated over-reporting can 
occur when the variable in question is 
socially desirable (e.g. income, 
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educational attainment, grades, study 
times, church attendance, sexual 
experience). Environmental conditions 
can motivate over-reporting or mis-
reporting, such as if an attractive 
female researcher is interviewing male 
undergraduates about attitude on 
gender equality in marriage. 
Depending on the details of the 
research, one of two things can 
happen: inflation of all estimates, or 
production of outliers. If all subjects 
respond the same way, the distribution 
will shift upward, not generally 
causing outliers. However, if only a 
small subsample of the group responds 
this way to the experimenter, or if 
multiple researchers conduct 
interviews, then outliers can be 
created. 

 Outliers from sampling error: another 
cause of outliers is sampling. It is 
possible that a few members of a 
sample were inadvertently drawn from 
a different population than the rest of 
the sample. For example, in education, 
in advert entry sampling academically 
gifted or mentally retorted students is 
a possibility and (depending on the 
goal of the study) might provide 
undesirable outliers. These cases 
should be removed as they do not 
reflect the target population. 

 Outliers from standardization failure: 
outliers can be caused by research 
methodology, particularly if 
something anomalous happened 
during a particular subject experience 
one might argue that a study of stress 
levels in school children around the 
country might have found some 
significant outliers. Unusual 
phenomena such as a construction 
noise outside a research laboratory or 
an experimenter feeling particularly 
grouchy, or even events outside the 
context of the research laboratory, 

such as a student protest, a rape or 
murder on campus, observations in the 
classroom the day before a big holiday 
recess and so on can produce outliers. 
Faulty or non-calibrated equipments is 
another common cause of outliers. 
These data can be legitimately 
discarded if the researchers are not 
interested in studying the particular 
phenomenon in question (e.g. if I were 
not interested in studying my subjects’ 
reactions to construction noise outside 
the laboratory). 

 Outliers from faulty distributed 
assumptions: incorrect assumptions 
about the distribution of the data can 
also lead to the presence of suspected 
outliers Iglewieze and Hoaglin, 
(1993). Blood sugar levels, 
disciplinary referrals, scores on 
classroom tests where students are 
well-prepared,            and self-reports 
of low-frequency behaviours (e.g. 
number of times a student has been 
suspended or held back a grade) may 
give rise to bimodal, skewed, 
asymptotic or flat distributions, 
depending upon the sampling design. 
The data may have a different 
structure than the researcher originally 
assumed, and long or short-term 
trends may affect the data in 
unanticipated ways. For example, a 
study of college library usage rates 
during the month of September may 
find outlying values at the beginning 
and end of the month, with 
exceptionally low rates at the 
beginning of the month when students 
have just returned to campus or are on 
break for labour weekend in (Nigeria) 
and exceptionally high rates at the end 
of the month, when mid-term 
examinations have begun. Depending 
on the goal of the research, these 
extreme values may or may not 
represent an aspect of the inherent 
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variability of the data, and may have a 
legitimate place in the data set. 

 Outliers as legitimate cases sampled 
from the correct population: it is 
possible that an outlier can come from 
the population being sampled 
legitimately through random chance, it 
is important to note that sample size 
plays a role in the probability of 
outlying values. Within a normally 
distributed population, it is more 
probable that a given data point will 
be drawn from the most densely 
concentrated area of the distribution, 
rather than one of the tails Evans, 
(1999); Sachs, (1982). As a researcher 
casts a wider net and the data set 
becomes larger, the more the sample 
resembles the population from which 
it was drawn and thus the likelihood of 
outlying values become greater. In 
other words, there is only about one 
percentage chance you will get an 
outlying data point from a normally 
distributed population, this means that, 
on the average, about one percentage 
of your subjects should be three 
standard deviations from the mean. In 
the case that outliers occur as a 
function of the inherent variability of 
the data, opinions differ widely on 
what to do. Due to the dexterous effect 
on power, accuracy and error rates that 
outliers can have, here it might be 
desirable to use a transformation or 
recoding/truncation strategy to both 
keep the individual in the data set and 
at the same time minimize the harm to 
statistical inference: Osborne, (2002). 

 Outliers as potential focus of inquiry: 
we all know that interesting research 
is often as much a matter of 
serendipity as planning and 
inspiration. Outliers can represent a 
nuisance error, or legitimate data. 
They can also be inspiration for 
inquiry. When researchers in Africa 

discovered that some women were 
living with HIV just fine for years and 
years, untreated, those rare cases were 
outliers compared to most untreated 
women, who die fairly rapidly. They 
could have been discarded as noise or 
error, but instead they serve as 
inspiration for inquiry. This extreme 
score might shed light on an important 
principal or issue. Before discarding 
outliers, researchers need to consider 
whether those data contain valuable 
information that may not necessarily 
relate to the intended study, but has 
importance in a more global sense. 

The presence of outliers can lead to inflated 
error rates and substantial distortions of 
parameter and statistics estimates when using 
either parametric or nonparametric tests 
(Zimmerman, 1994, 1995, 1998). Casual 
observation of the literature suggests that 
researchers rarely report checking for outliers 
of any sort. This inference is supported 
empirically by Osborne, Christiansen and 
Gunter (2001), who found that authors 
reported testing assumptions of the statistical 
procedure(s) used in their studies – including 
checking for the presence of outliers – only 
eight per cent of the time. Given what we 
know of the importance of assumptions to 
accuracy of estimates and error rates, this in 
itself is alarming. 
 
Wainer (1976) also introduced the concept of 
the “froigelier” referring to “unusual events 
which occur more often than Seldom” (p. 
286). These points lie near three standard 
deviations from the mean and hence may have 
a disproportionately strong influence on 
parameter estimates, yet are not so obvious or 
easily identified as ordinary outliers due to 
their relative proximity to the distribution 
center. As fringeliers are a special case of 
outliers, for much of the rest of this study we 
will use the generic term “outlier” to refer to 
any single data point of dubious origin or 
disproportionate influence. 
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Hadi and Simonoff (1993) provided 
distributional results for testing, multiple 
outliers in regression analysis. The test is 
based on the deletion residual. Beckman and 
Cook (1983) encountered a serious problem 
of “masking” if there are several outliers. 
Least square estimation of the parameter of 
the model may lead to small residuals for the 
outlying observations. Single detection 
methods (for example Cook and Weisberg, 
1982; Alkinson, 1985) may fail and the 
outliers will go undetected. 
 
Hawkins (1983) argues for exclusion of all 
possible outlying observations, which are then 
tested sequentially for reinclusion. The 
drawback to this procedure is that it is unclear 
how many observations should be deleted, 
and because of masking, which ones, before 
reinclusion and testing begin. 
 
The use of the forward search in regression is 
described in Atkinson and Riani (2000) 
whereas in Atkinson (1994) the emphasis on 
informative plots and their interpretations. 
Although the forward search is a powerful 
general method for the detection of multiple 
outliers and unidentified clusters and of their 
influential effects. The interest here is in 
Atkinson (1994) on information plots and the 
information it provides about the adequacy of 
our simple approximation to the distribution 
of the test statistic. 
 
Possible sources of outliers are recording and 
measurement errors is correct distribution 
assumption unknown data structure, or novel 
phenomenon (Iglewiez, 1993). A data set 
indicative of a novel phenomenon can be 
often labeled as an outlier. For instance, the 
measurements indicating existence of the hole 
in the ozone layer were initially thought to be 
outliers and they were automatically 
discarded. This join delayed the discovery of 
the phenomenon by several years (Berthouex, 
1994). The first step in data analysis is to 

label suspected outliers for further study. 
Three different methods are available to the 
investigation for normally distributed data: z-
score method, (Iglewiez, 1993; Barnett, 
1984). All of the experimental observations 
are standardized and the standardized values 
outside a predetermined bound are labeled as 
outliers (Rousseeuw, 1987). 
Outliers can arise from several different 
mechanisms as causes. Anscombe (1960) 
sorts outliers into categories from intentional 
or motivated misreporting; a participant may 
make a conscious effort to sabotage the 
research (Huck, 2000) or may be acting from 
other motives. In outliers from faulty 
distributional assumptions, incorrect 
assumption about the distribution of the data 
can also lead to the presence of suspected 
outliers (Iglewiez and Hoaglin, 1993). Due to 
the deleterious effect on power accuracy, and 
error rates that outliers can have, it might be 
desirable to use a transformation or recording 
strategy to both keep the individual in the data 
set and at the same time minimize the harm to 
statistical inference (Osborne, 2002). 
 
Rosner’s Test identifies outliers that are both 
high and low; it is therefore always two tailed 
(Gibbon, 1994). The R. Statistics is compared 
with a critical value (Gilbert, 1987). Rosner’s 
(1983) “many outlier” sequential procedures 
is an improved version of Rosner’s (1983) 
“extreme studentized deviate” outlier test. 
Simonoff (1982) found this earlier well 
compared to other outlier test, although 
Rosner (1983) points out that it tends to detect 
more outliers than are actually present. 
Rosner’s (1983) method assumes that the 
main body of data is from a normal 
distribution. 
Rosner’s tests are two tailed since the 
procedure identifies either suspiciously large 
or suspiciously small data. When a one tailed 
test is needed, that is when there is interest in 
detecting only large values or only small 
values, then the skewness test for outliers 
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discussed by Barnett and Lewis (1994) is 
suitable. 
 
Hamilton, L.C. (1982) give a graphical 
procedure for identifying outliers from 
bivariate normal or bivariate log normal 
distributions. 
 
Rather than identifying outliers and 
discarding them before doing least square 
regression, one could do robust regression, as 
discussed and illustrated by Rousseeuw and 
Leroy (1987) caution that robust regression 
should be applied only after the investigator is 
satisfied that less weight should be applied to 
the divergent data. Non-parametric regression 
discussed by Holander and Wolfe (1973), and 
Reckhow and Chapra (1983) is an alternative 
to either standard least squares regression or 
robust regression. 
 
Methods for detecting outliers have received a 
great deal of attention recently Cook and 
Wainer, 1976 and Steven, 1984). Leverages 
are related to an alternate regression 
diagnostic, Mahalanobis distance (Stevens, 
1984). 
Mixture regression occurs when there is an 
omitted categorical predictor like gender, 
species or location and different regression 
occur in each category. It has long been 
recognised that a lurking variable, a variable 
that has an important effect but is not present 
among the predictors under consideration 
(Box, 1966; Joiner, 1981; Moore, 1997) can 
complicate regression analyses. 
 
Atkinson, (1994) have applied Akaike 
Criterion (AIC) in detection of outliers by 
using (quasi) Bayesian approach with 
predictive likelihood in place of the usual 
likelihood function otherwise, detection of 
outliers has a long history. The main theme, 
however, has been around univariate and 
single outliers. Recently, some promising 
results have been obtained in detecting 

multiple outliers also in multivariate analysis 
(Hadi, 1992). 
 
An approach to the identification of aberrant 
points is the construction of outliers’ 
diagnostics. These are quantities computed 
from the data with the purpose of pinpointing 
influential points, after which these outliers 
are to be removed or corrected, followed by a 
least square analysis on the remaining cases. 
When there is only a single outlier, some of 
these methods work quite well by looking at 
the effect of deleting one point at a time. 
(Atkinson, 1985;) Cook and Weisberg, 1982 
and Hawkins, 1980). Unfortunately, it is 
much more difficult to diagnose outliers when 
there are several of them, due to the so-called 
masking effect which says that one may mask 
another. The naira extensions of classical 
diagnostics to such multiple outliers often 
give rise to extensive computations. Recent 
work by Atkinson (1986), Hawkins, Bradu 
and Kass (1984), and Rousseeuw and Van 
Zomeran (1999) indicates that one needs to 
use robust methods in one way or another to 
safely identify multiple outliers. 
 
Some researchers prefer visual inspection of 
the data. Others (Lornez, 1987) argue that 
outlier detection is merely a special case of 
the examination of data for influential data 
points. In analysis of variance, the biggest 
issue after screening for univariate outliers is 
the issue within cell outliers or the distance of 
an individual from the subgroup. Standardised 
residuals represent the distance from the 
subgroup and thus are effective in assisting 
analysis in examining data for multivariate 
outliers. Tabachnick and Fidell (2000) discuss 
data cleaning in the context of other analyses. 
 
Where outliers are illegitimately included in 
the data, it is only common sense that those 
data points should be removed (Barnett and 
Lewis, 1994). Few should disagree with that 
statement. When the outlier is either a 
legitimate part of the data or the cause is 
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unclear, the issue becomes unclear. Murkier 
Judd and McClelland (1989) make several 
strong points for removal even in these cases 
in order to get the most honest estimate of 
population parameters possible (Barnett and 
Lewis, 1994). 
 
On means of accommodating outliers is the 
use of transformations (Osborne, 2002). By 
using transformation extreme scores can be 
kept in the data set, and the relative ranking of 
scores remains yet the skew and error 
variance present in the variable can be 
recorded (Hamilton, 1992). 
 
However, transformations may not be 
appropriate for the model being tested or may 
affect its interpretation in undesirable ways. 
Taking the logarithms of a variable makes a 
distribution less skewed, but it also alters the 
relationship between the original variables in 
the model (Newton and Rudestam, 1999; 
Osborne, 2001). 
 
Instead of transformation, researchers 
sometimes use various robust procedures to 
protect their data from being distorted by the 
presence of outliers. These techniques 
“accommodate the outliers at no serious 
inconvenience or are robust against the 
presence of outliers (Barnett and Lewis, 1994; 
p. 35). Certain parameter estimates, especially 
the mean and least square estimates, are 
particularly vulnerable to outliers, or have 
“low breakdown” values. For this reason, 
researchers turn to robust or “high 
breakdown” methods to provide alternative 
estimates for these important aspects of data. 
 
A common robust estimation method of the 
univariate distributions involves the use of 
trimmed mean, which is calculated by 
temporarily eliminating extreme observations 
of both ends of the sample (Anscombe, 1960). 
Alternatively, researchers may choose to 
compute a winsorized mean, for which the 
highest and lowest observations are 

temporarily censored, and replaced with 
adjacent values from the remaining data 
(Barnett and Lewis, 1994). 
 
Assuming that the distribution of prediction 
errors is close to normal, several common 
robust regression techniques can help reduce 
the influence of outlying data points. The 
least trimmed squares (LTS) and the least 
median of squares (LMS) estimators are 
conceptually similar to the trimmed mean, 
helping to minimize the scatter of the 
prediction errors by eliminating a specific 
percentage of the largest positive and negative 
outliers (Rousseeuw and Leroy, 1987). While 
Winsorized regression smoothes Y-data by 
replacing extreme residuals with the next 
closest value in the dataset (Lane, 2002). 
 
In correlations, we are expected to see the 
effect of outliers on two different types of 
correlations. These are correlations close to 
zero (to demonstrate the effect of outliers on 
Type II error rates) correlations will be 
calculated in each sample both before 
removal of outliers and after. If a sample 
correlation leads to a decision that deviated 
from the “correct” state of affairs it was 
considered an error or inference. In most 
cases the incidence of errors of inference was 
lower with cleaned than unclean data. 
 
For the T-test and Analysis of Variance 
(ANOVA) this deals with analysis that look at 
group mean differences, such as the t-test and 
analysis of variance. For the purpose of 
simplicity these analyses are simple t-tests but 
these results would be generalized to any 
analysis of variance. For these analyses two 
different conditions are examined when there 
were no significant differences between the 
groups in the population and when there were 
significant group differences in the 
population. For both variables the effects of 
having outliers in only one cell as compared 
to both cells were examined. 
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Removal of outliers will produce a significant 
change in the mean differences between two 
groups. It will also produce significant change 
in the t-statistics. Evidence of outliers may 
produce type I or type II errors. Removal of 
outliers may tend to have a significant 
beneficial effect on error rates. 
 
Most analysts argue that removal of extreme 
scores produces undesirable outcomes; they 
are in the minority especially when the 
outliers are illegitimate. When the data points 
are suspected of being legitimate, some 
authors Orr, Sacketts, P.R. and DuBois 
(1991), argue that data are more likely to be 
representative of the population as a whole if 
outliers are not removed. 
 
Conceptually, there are strong arguments for 
removal or alteration of outliers. In some 
analyses the benefits of outliers’ removal are 
reported. Both correlations and t-tests may 
show significant changes in statistics as a 
function of removal of outliers. In most cases 
errors of inference were significantly reduced, 
a prime argument for screening and removal 
of outliers. It is straightforward to argue that 
the benefits of data cleaning extend to simple 
and multiple regressions to different types of 
ANOVA procedures. There are other 
procedures outside these but the majority of 
social science research utilizes one of these 
procedures. Other researches (e.g. 
Zimmerman, 1995) have dealt with the effects 
of extreme scores in less commonly used 
procedures, such as nonparametric analyses. 
Thus, checking for the presence of outliers 
and understanding how they impact data 
analysis are extremely part of a complete 
analysis, especially when any statistical 
technique is involved.  
 
This study will examine the causes, problems, 
methods of detection and approaches to data 
analysis of outlier in a Univariate, Bivariate 
and Multivariate data using four test methods 
namely; Rosners’, Grubbs’, Data plots and 

Leverage approach in a regression analysis 
model. 
 
3 IDENTIFICATION OF 
OUTLIERS. 
There is no such thing as a simple test. 
However, there are many ways to look at a 
distribution of numerical values, to see if 
certain points seem out of line with the 
majority of the data. And expert knowledge of 
what values data can have is probably the best 
solution. Thus, there are some guidelines with 
which one can always begin. 
 
The “normal” distribution myth. Although not 
necessarily an issue with outliers, it is 
important to first recognize what the 
distribution of your data looks like. For many 
statistical modeling purposes, the data do not 
require a “normal” or symmetric, bell-shaped 
distribution. (This assumption applies to the 
residuals from a liner statistical model). Data 
collected as counts will not usually look very 
“normal”. Data that are collected across group 
may have a distribution that has several local 
peaks. In fact, for data to be entered into a 
linear regression model, it is preferable for the 
independent or explanatory variables to not 
have a normal distribution. The mathematics 
behind linear regression demonstrates that 
normality is not required or even desirable for 
this type of analysis. What is important is to 
check for data values that lie well out side the 
range of other data called “leverage points” 
that will likely exert a strong influence on the 
results. The objective is to collect data with a 
distribution that allows one make the best 
influence possible about the population under 
study. 

 Visual Aids: Always check the 
distributions of data whether they be 
nominal or continuous. This procedure 
should be one of the first steps in data 
analysis as it will quickly reveal the 
most obvious outliers. For continuous 
or interval data, a dot plot of a single 
variable or multi-dimensional of all 
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pair wise scatter plots of continuous 
variables are good methods to visually 
detect outlying observations. With 
larger sample sizes a box plot is 
another very helpful tool, since it 
makes no distributional assumptions 
which are often not relevant (e.g. 
assume a normal distribution when 
you may have skewed non-negative 
data). They also may require that a 
location (mean) or scale (standard 
deviation) parameter be estimated 
from the data. As said earlier, outliers 
greatly influence these two summary 
statistics. This is one reason why 
eliminating data that exceed two or 
three standard deviations may not be a 
good or even a reasonable decision 
rule. 

 IQR Computation: a simple task is to 
compute the inter-quarter-range (IQR) 
for continuous data and then take a 
multiple of it as a cut-off value to 
define values which are considered 
outliers. For large datasets, a box plot 
applies this technique to identify 
outliers. It is an extremely effective 
approach, especially when you have 
thirty or more data points within each 
group level. 

 
4 DEALING WITH OUTLIERS. 
There is a great deal of debates as to what to 
do with identified outliers. A thorough review 
of the various arguments is not possible here 
rather will be seen in my literature to come. If 
your data set contains hundred of 
observations an outlier or two may not cause, 
cause for alarm. However, outliers can spell 
trouble for models fitted to small data sets, 
since the sum of squares of the residuals is the 
basis for estimating parameters and 
calculating error statistics and confidence 
intervals, one or bad outliers in a small data 
set can badly skew the result. When outliers 
are found, two questions arise: 

(a) Are they merely fluke of some kind? 
For instance data entry errors or the 
results of exceptional conditions that 
are not expected to recur or do they 
represent a real effect that you might 
want to include in your model. 

(b) How much have the coefficients error 
statistics and predictions etc been 
affected? 

An outlier may or may not have a dramatic 
effect on a model depending on the amount of 
“Leverage” that it has. Its leverage depends 
on the values of the independent variables at 
the point where it occurred. If the independent 
variables were all relatively close to their 
mean values, then the outliers may have a 
large influence in the estimate of the 
corresponding coefficients e.g. it may cause 
an otherwise insignificant variable to appear 
significant or vice versa. The best way to 
determine how much leverage on outlier (or 
group of outliers) has is to exclude it from 
fitting the model and compare the results with 
those originally obtained. 
This paper is aimed at 

(i) Checking a data set if it contains one 
or more observations that appear 
different from the rest of the data; 

(ii) Checking the data value that does not 
conform to the remainder of the data; 

(iii) If (ii) above is found, to check if the 
observation will cause the simple 
regression model to be substantially 
different from what they would be if 
the observation were removed from 
the data set; 

 
5 SCOPE OF STUDY 
 
The study is designed to check/detect outliers 
in a univariate, bivariate and multivariate 
data. Two univariate tests will be used: 
Rosner’s and Grubbs. Influential observations 
will be checked in the bivariate data (simple 
linear regression) using data plots. Finally 
leverage value method will be used to detect 
outliers in a multiple regression model. 
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6 SIGNIFICANCE OF STUDY 
This research will provide clues on the 
application of exploratory data analysis 
techniques that is involved in the detection of 
outliers in a univariate, bivariate and 
multivariate data and its evaluation on how 
they impact the results of an analysis, which if 
the contents are adequately understood by 
researchers will help to reach conclusions that 
are in line with their research objectives in 
their research works. 
 
7 DEFINITION OF TERMS 

 Outlier: An observation in which the 
studentized residual is large relative to 
other observations in the data set. 

 Influential observation: An 
observation(s) that individually or 
jointly excessively influence the 
regression equation. 

 Fringelier: Unusual events which 
occur more often than seldom. 

 Robust Method: A statistical 
procedure to protect data from being 
distorted by outliers. 

 Mixture Regression: This is a 
regression that occur when there is an 
omitted categorical predictor, thus 
regression occur in each category. 

 IQR Computation: Inter-quartile 
range computation. 

 
8 METHODOLOGY 
 
This chapter was designed to explain the 
methods used by the researcher in analyzing 
data used in the study. Secondary data were 
used in this study. 
The source of the data was from Dr. Kelly 
Uscategui, University of Connecticut on 
BOLLERS.DAT, Statistics, eighth edition. 
The data were collected through library 
research as shown in Appendix A.  
 
 
9 REGRESSION ANALYSIS 

 
Regression analysis is an estimating equation 
which expresses the functional relationship 
between two or more variables as well takes 
care of the error term which is classified into 
1. Simple linear regression 
2. Multiple linear regression 
 
9.1 SIMPLE LINEAR REGRESSION 
 
This is the type of linear regression that 
involves only two variables one independent 
and one dependent plus the random error 
term. The simple linear regression model 
assumes that there is a straight line (linear) 
relationship between the dependent variable y 
and the independent variable x. The model is 
expressed as  
 Y = 0 + 1x +   …
 (1) 
Y intercept 0 and the slope 1 are called the 
regression coefficients. The true value of the 
y-intercept (0) and slope (1) in the simple 
linear regression model are not known and 
can be estimated by the least square estimate 
methods and is expressed by 
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where 
n = number of observations 

Then the least square point estimate of 
the y-intercept 0 is expressed as 
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To estimate how “good” our point 

estimates of 0 and 1 are, the visually fitted 



International Journal of Education and Research                                     Vol. 1 No. 4 April 2013 
 

11 
 

line called the least square regression line or 
least square prediction equation is used. The 
general form of the equation is given by 
 ixi bby  0ˆ  

 
9.2 SCATTER DIAGRAM 
 
In the analysis of the relationship between 
variables, it is often desirable to present a 
scatter diagram. A scatter diagram is used to 
investigate the pattern of the relationship 
between variables under investigation. It also 
gives a rough idea of how the variables x and 
y only are related and suggests the type of 
regression model to be fitted for the data. 
From there one can be able to determine if 
there is a positive or negative slope or if the 
points are curvilinear, exponential, non-linear 
or random. 
 
For the purpose of this study, the scatter plots 
is used to detect an observation that is 
separated from the rest of the data called 
“outlier” this is done by plotting a data plot of 
the values of a dependent variable y against 
an independent variable x. 
 
10 DATA ANALYSIS 
We are analyzing data for 36 boilers collected 
for this research work. However, the 
statistical techniques discussed in this paper 
shall be used in this section. 
 
 
 IDENTIFICATION OF 

INFLUENTIAL OBSERVATION 
 
We shall check for observations that cause the 
least squares point estimates to be 
substantially different from what they would 
be if the observation were removed from the 
data set (influential). The least square point 
estimates of the regression model  

443322110 XXXXY  ˆ  were as 
shown in Appendix B and written here as  

4321 X32020X33586X15922X00810033870Y .....ˆ   
with R2 = 0.930. The least square point 

estimates of the regression model when 
observations 4 and 19 were removed from the 
data as shown (in Appendix B, regression 2) 
as suspected outliers is 

4321 X42000X51960X83390X0071701402Y ....ˆ 

. 
The coefficients of multiple 

determination R2 of Y, X1, X2, X3, X4 was 
0.930 which shows that 93.0% of the total 
variations of Y explained by the regression. In 
the second regression, only 86.3% of the total 
variations of Y explained by the regression. 
This implies that observations 4 and 19 are 
influential, because of the change in R2. 

An observation may be an outlier with 
respect of its Y value and or its X values but 
an outlier may or may not be influential. We 
can illustrate these ideas by considering a 
hypothetical plot of the values of the 
dependent variable Y against an independent 
variable X. We can also show this by 
considering a hypothetical plot of Y against 
X1, Y against X2, Y against X3 and against 
X4. 

A plot of Y against X1(see Appendix 
C,) shows that observations 4 and 19 are 
outlying with respect to both x value and y 
values observation 28(90000, 2635) is 
outlying with respect to x value. Also, the 
least square estimates of the regression model  

110 XY  ˆ  is 1X00795031760Y ..ˆ   (as 
shown in Appendix B, Regression 3) with R2 
= 0.685 and when observations 4 and 19 are 
removed, the least square estimates is 

1X00535042326Y ..ˆ   with R2 = 
0.467(Appendix A, Regression 4). We 
noticed again that the coefficient of multiple 
determination R2 changes from 0.685 to 
0.467. This also shows that observations 4 
and 19 are influential. 

A plot of Y against X2 (see Appendix 
C, Graph 2) shows that observations 4 and 19 
are outlying with respect to both x value and y 
values observation is outlying with respect to 
x value. Also, the least square estimates of the 
regression model 110 XY  ˆ  is 
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2X1458361859Y ..ˆ   (as shown in 
Appendix B, Regression 3) with R2 = 0.529 
and when observations 4 and 19 are removed, 
the least square estimates is 

2X3800112869Y ..ˆ   with R2 = 0.131 
(Appendix B, Regression 6). It obviously 
shows that observations 4 and 19 are seriously 
influential. 

A plot of Y against X3 (see Appendix 
C, Graph 3) shows that observations 4 and 19 
are outlying with respect to y value. The least 
square estimates of the regression model 

310 XŶ   is 3X8368217155Y ..ˆ   with 
R2 = 0.330 and when observations 4 and 19 
are removed, the least square estimates is 

3X5179885270Y ..ˆ   with R2 = 0.170 
(Appendix B, Regression 8). This shows that 
though observations 4 and 19 are outlying 
with respect to y value and not x values, the 
R2 does not really differ.  

A plot of Y against X4 (see Appendix 
C, Graph 4) shows that observations 4 and 19 
are outlying with respect to y value. The least 
square estimates of the regression model  as 
shown in Appendix B, regression 9 is 

3X6271282783Y ..ˆ   with               R2 = 0.256 
and when observations 4 and 19 are removed, 
the least square estimates is 

4X2190072783Y ..ˆ   with R2 = 0.170 
(Appendix B, Regression 10). This shows 
also that though observations 4 and 19 are 
outlying with respect to y value and not x 
values, the R2 does not really differ. Thus, it 
is not influential. 

 
11 SUMMARY, CONCLUSION AND  

RECOMMENDATION 
 
11.1       SUMMARY 
 
In identifying influential observation, the 
multiple regression model of Y on X1, X2, X3, 
and X4 showed that the least square estimate 
changed from when the two suspected outliers 
(observations 4 and 19) were removed. The 

R2 also reduced from 0.930 to 0.863. This 
shows that observations 4 and 19 are 
influential. A simple plot of Y on X1 reveals 
that observations 4 and 19 are outlying with 
respect to both X value and Y values. The 
regression model of Y on X1 showed that the 
least square estimate changed from when 
observation 4 and 19 were removed. The R2 
reduced from 0.685 to 0.467 which shows that 
observations 4 and 19 are influential. 
 
A simple plot of Y on X2 reveals that 
observations 4 and 19 are outlying with 
respect to both X and Y values. The R2 
reduced from 0.529 to 0.131 that shows that 
observations 4 and 19 are influential. 
 
A simple plot of Y on X3 reveals again that 
observations 4 and 19 are outlying with 
respect to Y values. The R2 does not 
necessarily differ, thus observations 4 and 19 
are not influential. 
 
A simple plot of Y on X4 reveals again that 
observations 4 and 19 are outlying with 
respect to Y values. The R2 does not 
necessarily differ, thus observations 4 and 19 
are not influential. 
 
11.2 CONCLUSION 

All of the above discussed statistical 
tests are used to determine if experimental 
observations are statistical outliers in the data 
set. If an observation is statistically 
determined to be an outlier this outlier before 
its exclusion is checked if it is influential. The 
observation should be treated as an extreme 
but valid measurement and it should be in 
further analysis. 

Developing techniques to look for 
outliers and understanding how they impact 
data analysis are extremely important part of a 
thorough analysis, especially when statistical 
techniques are applied to the data. For 
example, in the procedure of outliers, any 
statistical test based on sample means and 
variances can be distorted. Estimated 
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regression coefficients that minimize the sum 
of squares for error (SSE) are very sensitive 
to outliers. 

There are several other problematic 
effects of outliers including distortion of 
estimates, inflated sums of square you will be 
able to partition source of variation in the data 
into meaningful components, faulty 
conclusions, its quite possible to draw false 
conclusion if you have not looked for 
indication that there was anything usual in the 
data. 

Effectively working with outliers in 
numerical data can be a rather difficult and 
frustrating experience. Neither ignoring nor 
deleting them at will is good solutions. If you 
do nothing, you will end up with a model that 
describes essentially none of the data, neither 
the bulk of the data nor the outliers. Even 
though your numbers may be perfectly 
legitimate, if they lie outside the verge of 
most of the data, they can cases potential 
computational and influence problems.  
 
11.3 RECOMMENDATION 

Having carried out this research work , 
the following recommendations are made; 
1. We recommend that experimenters 

should keep good record for each 
experiment. All data should be 
recorded with any possible 
explanation or additional information. 

2. We recommend that analyst should 
employ robust statistical methods. 
These methods are minimally affected 
by outliers. 

3. If any observation is statistically 
determined to be an outlier, the analyst 
should determine an explanation for 
this outlier before exclusion from 
further analysis. If an explanation 
cannot be found, then the observation 
should be treated as an extreme but 
valid measurement and it should be in 
further analysis. 

  

4. Finally, when analyst identifies 
outliers, he must decide what to do 
with it. Outliers that are obvious 
mistakes are corrected when possible, 
and the corrected values are inserted. 
If the correct value is not known and 
cannot be obtained, the datum might 
be excluded and statistical methods 
that were developed specifically for 
missing values situation could be 
used. 
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APPENDIX A 

 
Table 1: BOILERS DATA 

S/N 
Man-
Hours 

Boiler 
Capacity  

Design 
Pressure 

Boiler 
Type 

Drum 
Type  

1 3137 120000 375 1 1 

2 3590 65000 750 1 1 

3 4526 150000 500 1 1 

4 10825 1073877 2170 0 1 

5 4023 150000 325 1 1 

6 7606 610000 1500 0 1 

7 3748 88200 399 1 1 

8 2972 88200 399 1 1 

9 3163 88200 399 1 1 
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10 4065 90000 1140 1 1 

11 2048 30000 325 1 1 

12 6500 441000 410 1 1 

13 5651 441000 410 1 1 

14 6565 441000 410 1 1 

15 6387 441000 410 1 1 

16 6454 627000 1525 0 1 

17 6928 610000 1500 0 1 

18 4268 150000 500 1 1 

19 14791 1089490 2970 0 1 

20 2680 125000 750 1 1 

21 2974 120000 375 1 0 

22 1965 65000 750 1 0 

23 2566 150000 500 1 0 

24 1515 150000 250 1 0 

25 2000 150000 500 1 0 

26 2735 150000 325 1 0 

27 3698 610000 1500 0 0 

28 2635 90000 1140 1 0 

29 1206 30000 325 1 0 

30 3775 441000 410 1 0 

31 3120 441000 410 1 0 

32 4206 441000 410 1 0 

33 4006 441000 410 1 0 

34 3728 627000 1525 0 0 

35 3211 610000 1500 0 0 

36 1200 30000 325 1 0 

 
Source: Dr. Kelly Uscategui, University of 
Connecticut. 
 
Table 2: BOILERS DATA AS USED 
IN THE STUDY 
 

S/N 

Man-
Hours 

Boiler 
Capacity  

Design 
Pressure 

Boiler 
Type 

Drum 
Type  

Y X1 X2 X3 X4 

1 3137 120000 375 1 1 

2 3590 65000 750 1 1 

3 4526 150000 500 1 1 

4 10825 1073877 2170 0 1 

5 4023 150000 325 1 1 

6 7606 610000 1500 0 1 

7 3748 88200 399 1 1 

8 2972 88200 399 1 1 

9 3163 88200 399 1 1 

10 4065 90000 1140 1 1 

11 2048 30000 325 1 1 

12 6500 441000 410 1 1 

13 5651 441000 410 1 1 

14 6565 441000 410 1 1 

15 6387 441000 410 1 1 

16 6454 627000 1525 0 1 

17 6928 610000 1500 0 1 

18 4268 150000 500 1 1 

19 14791 1089490 2970 0 1 

20 2680 125000 750 1 1 

21 2974 120000 375 1 0 

22 1965 65000 750 1 0 

23 2566 150000 500 1 0 

24 1515 150000 250 1 0 

25 2000 150000 500 1 0 

26 2735 150000 325 1 0 

27 3698 610000 1500 0 0 

28 2635 90000 1140 1 0 

29 1206 30000 325 1 0 

30 3775 441000 410 1 0 

31 3120 441000 410 1 0 

32 4206 441000 410 1 0 

33 4006 441000 410 1 0 

34 3728 627000 1525 0 0 

35 3211 610000 1500 0 0 

36 1200 30000 325 1 0 

NOTE: Y is the dependent variable which 
X1, X2, X3 and X4 are the independent 
variables. 
For the purpose of this study, the following 
holds: 
Y represents Man-Hours 
X1 represents Boiler Capacity 
X2 represent Design Pressure 
X3 represent Boiler Type 
X4 represent Drum Type 
 
TABLE 3: BOILERS DATA 
 OBSERVATION 4 AND 19 REMOVED 

 

S/N 

Man-
Hours 

Boiler 
Capacity  

Design 
Pressure 

Boiler 
Type 

Drum 
Type  

Y X1 X2 X3 X4 

1 3137 120000 375 1 1 

2 3590 65000 750 1 1 

3 4526 150000 500 1 1 

4 . . . . . 

5 4023 150000 325 1 1 

6 7606 610000 1500 0 1 

7 3748 88200 399 1 1 

8 2972 88200 399 1 1 
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9 3163 88200 399 1 1 

10 4065 90000 1140 1 1 

11 2048 30000 325 1 1 

12 6500 441000 410 1 1 

13 5651 441000 410 1 1 

14 6565 441000 410 1 1 

15 6387 441000 410 1 1 

16 6454 627000 1525 0 1 

17 6928 610000 1500 0 1 

18 4268 150000 500 1 1 

19 . . . . . 

20 2680 125000 750 1 1 

21 2974 120000 375 1 0 

22 1965 65000 750 1 0 

23 2566 150000 500 1 0 

24 1515 150000 250 1 0 

25 2000 150000 500 1 0 

26 2735 150000 325 1 0 

27 3698 610000 1500 0 0 

28 2635 90000 1140 1 0 

29 1206 30000 325 1 0 

30 3775 441000 410 1 0 

31 3120 441000 410 1 0 

32 4206 441000 410 1 0 

33 4006 441000 410 1 0 

34 3728 627000 1525 0 0 

35 3211 610000 1500 0 0 

36 1200 30000 325 1 0 

 
 
 
 
 
APPENDIX B 

 
REGRESSION 1 (Complete data) 

 
 
Results for: Worksheet 2 
  
Regression Analysis: Y versus X1, X2, X3, X4  
 
The regression equation is 
Y = - 3870 + 0.00810 X1 + 2.16 X2 + 3586 X3 + 2020 X4 
 
 
Predictor       Coef    SE Coef      T      P    VIF 
Constant     -3870.3      861.2  -4.49  0.000 
X1         0.0081030  0.0007875  10.29  0.000  2.982 
X2            2.1592     0.4382   4.93  0.000  4.551 
X3            3586.3      672.8   5.33  0.000  4.886 
X4            2020.3      259.9   7.77  0.000  1.042 
 

 
S = 759.238   R-Sq = 93.0%   R-Sq(adj) = 92.1% 
 
PRESS = 32451614   R-Sq(pred) = 87.31% 
 
Analysis of Variance 
 
Source          DF         SS        MS       F      P 
Regression       4  237794895  59448724  103.13  0.000 
Residual Error  31   17869720    576443 
  Lack of Fit   18   15796077    877560    5.50  0.002 
  Pure Error    13    2073643    159511 
Total           35  255664615 
 
 15 rows with no replicates 
 
 
Source  DF     Seq SS 
X1       1  175007141 
X2       1    4591993 
X3       1   23364628 
X4       1   34831133 
 
Unusual Observations 
 
Obs       X1      Y    Fit  SE Fit  Residual  St Resid 
 19  1089490  14791  13391     580      1400      2.86RX 
 20   125000   2680   4369     227     -1689     -2.33R 
 21   120000   2974   1498     204      1476      2.02R 
 
R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large leverage. 
 
 
Durbin-Watson statistic = 2.40696 

 
REGRESSION 2 (Incomplete data) 

      
Regression Analysis: Y versus X1, X2, X3, X4  
 
The regression equation is 
Y = - 1402 + 0.00717 X1 + 0.834 X2 + 1961 X3 + 2000 X4 
 
34 cases used, 2 cases contain missing values 
 
Predictor       Coef    SE Coef      T      P    VIF 
Constant       -1402       1164  -1.20  0.238 
X1         0.0071706  0.0008296   8.64  0.000  2.377 
X2            0.8339     0.5930   1.41  0.170  5.132 
X3            1960.5      821.0   2.39  0.024  7.478 
X4            2000.4      229.9   8.70  0.000  1.005 
 
 
S = 667.350   R-Sq = 86.3%   R-Sq(adj) = 84.4% 
 
PRESS = 17963931   R-Sq(pred) = 80.93% 
 
Analysis of Variance 
 
Source          DF        SS        MS      F      P 
Regression       4  81263067  20315767  45.62  0.000 
Residual Error  29  12915340    445357 
  Lack of Fit   16  10841697    677606   4.25  0.006 
  Pure Error    13   2073643    159511 
Total           33  94178407 
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 13 rows with no replicates 
 
Source  DF    Seq SS 
X1       1  44016857 
X2       1    251199 
X3       1   3267135 
X4       1  33727876 
 
Unusual Observations 
 
Obs      X1     Y   Fit  SE Fit  Residual  St Resid 
  6  610000  7606  6223     296      1383      2.31R 
 20  125000  2680  4081     221     -1401     -2.22R 
 
R denotes an observation with a large standardized residual. 
 
 
Durbin-Watson statistic = 2.18328 

 
 

REGRESSION 3 (Complete data) 
 
Regression Analysis: Y versus X1  
 
The regression equation is 
Y = 1760 + 0.00795 X1 
 
 
Predictor       Coef    SE Coef     T      P    VIF 
Constant      1760.3      390.8  4.50  0.000 
X1         0.0079456  0.0009251  8.59  0.000  1.000 
 
 
S = 1540.22   R-Sq = 68.5%   R-Sq(adj) = 67.5% 
 
PRESS = 101555418   R-Sq(pred) = 60.28% 
 
 
Analysis of Variance 
 
Source          DF         SS         MS      F      P 
Regression       1  175007141  175007141  73.77  0.000 
Residual Error  34   80657474    2372279 
  Lack of Fit   10   36814938    3681494   2.02  0.078 
  Pure Error    24   43842536    1826772 
Total           35  255664615 
 
 
 3 rows with no replicates 
 
 
Unusual Observations 
 
Obs       X1      Y    Fit  SE Fit  Residual  St Resid 
  4  1073877  10825  10293     744       532      0.39 X 
 19  1089490  14791  10417     758      4374      3.26RX 
 34   627000   3728   6742     384     -3014     -2.02R 
 35   610000   3211   6607     372     -3396     -2.27R 
 
R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large leverage. 
 
 
Durbin-Watson statistic = 0.912587 

 

REGRESSION 4 (Incomplete data) 
 
Regression Analysis: Y versus X1  
 
The regression equation is 
Y = 2326 + 0.00535 X1 
 
 
34 cases used, 2 cases contain missing values 
 
 
Predictor      Coef   SE Coef     T      P    VIF 
Constant     2326.4     349.8  6.65  0.000 
X1         0.005349  0.001009  5.30  0.000  1.000 
 
 
S = 1252.02   R-Sq = 46.7%   R-Sq(adj) = 45.1% 
 
PRESS = 58199599   R-Sq(pred) = 38.20% 
 
 
Analysis of Variance 
 
Source          DF        SS        MS      F      P 
Regression       1  44016857  44016857  28.08  0.000 
Residual Error  32  50161550   1567548 
  Lack of Fit    8   6319014    789877   0.43  0.890 
  Pure Error    24  43842536   1826772 
Total           33  94178407 
 
 
 1 rows with no replicates 
 
 
Unusual Observations 
 
Obs      X1     Y   Fit  SE Fit  Residual  St Resid 
 35  610000  3211  5589     402     -2378     -2.01R 
 
R denotes an observation with a large standardized residual. 
 
 
Durbin-Watson statistic = 0.627407 

 
 
 

REGRESSION 5 (Complete data) 
 
Regression Analysis: Y versus X2  
 
The regression equation is 
Y = 1860 + 3.15 X2 
 
 
Predictor    Coef  SE Coef     T      P    VIF 
Constant   1859.6    503.4  3.69  0.001 
X2         3.1458   0.5093  6.18  0.000  1.000 
 
 
S = 1882.45   R-Sq = 52.9%   R-Sq(adj) = 51.5% 
 
PRESS = 153454684   R-Sq(pred) = 39.98% 
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Analysis of Variance 
 
Source          DF         SS         MS      F      P 
Regression       1  135181595  135181595  38.15  0.000 
Residual Error  34  120483020    3543618 
  Lack of Fit   10   75225613    7522561   3.99  0.003 
  Pure Error    24   45257407    1885725 
Total           35  255664615 
 
 
 3 rows with no replicates 
 
 
Unusual Observations 
 
Obs    X2      Y    Fit  SE Fit  Residual  St Resid 
  4  2170  10825   8686     778      2139      1.25 X 
 19  2970  14791  11203    1162      3588      2.42RX 
 
R denotes an observation with a large standardized residual. 
X denotes an observation whose X value gives it large leverage. 
 
 
Durbin-Watson statistic = 0.978152 

 
REGRESSION 6 (Incomplete data) 

   
Regression Analysis: Y versus X2  
 
The regression equation is 
Y = 2869 + 1.38 X2 
 
 
34 cases used, 2 cases contain missing values 
 
 
Predictor    Coef  SE Coef     T      P    VIF 
Constant   2869.1    500.2  5.74  0.000 
X2         1.3800   0.6271  2.20  0.035  1.000 
 
 
S = 1598.81   R-Sq = 13.1%   R-Sq(adj) = 10.4% 
 
PRESS = 94041398   R-Sq(pred) = 0.15% 
 
 
Analysis of Variance 
 
Source          DF        SS        MS     F      P 
Regression       1  12380689  12380689  4.84  0.035 
Residual Error  32  81797718   2556179 
  Lack of Fit    8  36540311   4567539  2.42  0.045 
  Pure Error    24  45257407   1885725 
Total           33  94178407 
 
 
 1 rows with no replicates 
 
 
Durbin-Watson statistic = 0.711541 

 
REGRESSION 7 (Incomplete data) 
 
Regression Analysis: Y versus X3  

 
The regression equation is 
Y = 7155 - 3683 X3 
 
 
Predictor     Coef  SE Coef      T      P    VIF 
Constant    7155.1    793.5   9.02  0.000 
X3         -3682.8    899.8  -4.09  0.000  1.000 
 
 
S = 2244.43   R-Sq = 33.0%   R-Sq(adj) = 31.0% 
 
PRESS = 209979555   R-Sq(pred) = 17.87% 
 
 
Analysis of Variance 
 
Source          DF         SS        MS      F      P 
Regression       1   84390625  84390625  16.75  0.000 
Residual Error  34  171273989   5037470 
Total           35  255664615 
 
 
The number of distinct predictor combinations equals the number 
of 
     parameters. 
No degrees of freedom for lack of fit. 
Cannot do pure error test. 
 
 
Unusual Observations 
 
Obs    X3      Y   Fit  SE Fit  Residual  St Resid 
 19  0.00  14791  7155     794      7636      3.64R 
 
R denotes an observation with a large standardized residual. 
 
 
Durbin-Watson statistic = 1.30457 

 
REGRESSION 8 (Complete data) 

    
Regression Analysis: Y versus X3  
 
The regression equation is 
Y = 5271 - 1798 X3 
 
 
34 cases used, 2 cases contain missing values 
 
 
Predictor     Coef  SE Coef      T      P    VIF 
Constant    5270.8    638.2   8.26  0.000 
X3         -1798.5    703.2  -2.56  0.015  1.000 
 
 
S = 1563.21   R-Sq = 17.0%   R-Sq(adj) = 14.4% 
 
PRESS = 90911413   R-Sq(pred) = 3.47% 
 
 
Analysis of Variance 
 
Source          DF        SS        MS     F      P 
Regression       1  15982317  15982317  6.54  0.015 
Residual Error  32  78196089   2443628 
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Total           33  94178407 
 
 
The number of distinct predictor combinations equals the number 
of 
     parameters. 
No degrees of freedom for lack of fit. 
Cannot do pure error test. 
 
 
Unusual Observations 
 
Obs    X3     Y   Fit  SE Fit  Residual  St Resid 
 14  1.00  6565  3472     295      3093      2.01R 
 
R denotes an observation with a large standardized residual. 
 
 
Durbin-Watson statistic = 0.788722 

 
REGRESSION 9 (Incomplete data) 

 
Regression Analysis: Y versus X4  
 
The regression equation is 
Y = 2784 + 2713 X4 
 
 
Predictor    Coef  SE Coef     T      P    VIF 
Constant   2783.8    591.4  4.71  0.000 
X4         2712.6    793.4  3.42  0.002  1.000 
 
 
S = 2365.55   R-Sq = 25.6%   R-Sq(adj) = 23.4% 
 
PRESS = 211244596   R-Sq(pred) = 17.37% 
 
 
Analysis of Variance 
 
Source          DF         SS        MS      F      P 
Regression       1   65406211  65406211  11.69  0.002 
Residual Error  34  190258404   5595835 
Total           35  255664615 
 
 
The number of distinct predictor combinations equals the number 
of 
     parameters. 
No degrees of freedom for lack of fit. 
Cannot do pure error test. 
 
 
Unusual Observations 
 
Obs    X4      Y   Fit  SE Fit  Residual  St Resid 
  4  1.00  10825  5496     529      5329      2.31R 
 19  1.00  14791  5496     529      9295      4.03R 
 
R denotes an observation with a large standardized residual. 
 
 
Durbin-Watson statistic = 2.28861 

 
 

REGRESSION 10 (Complete data) 
 
Regression Analysis: Y versus X4  
 
The regression equation is 
Y = 2784 + 1900 X4 
 
 
34 cases used, 2 cases contain missing values 
 
 
Predictor    Coef  SE Coef     T      P    VIF 
Constant   2783.7    352.4  7.90  0.000 
X4         1900.2    484.4  3.92  0.000  1.000 
 
 
S = 1409.71   R-Sq = 32.5%   R-Sq(adj) = 30.4% 
 
PRESS = 71537033   R-Sq(pred) = 24.04% 
 
 
Analysis of Variance 
 
Source          DF        SS        MS      F      P 
Regression       1  30585083  30585083  15.39  0.000 
Residual Error  32  63593324   1987291 
Total           33  94178407 
 
 
The number of distinct predictor combinations equals the number 
of 
     parameters. 
No degrees of freedom for lack of fit. 
Cannot do pure error test. 
 
 
Unusual Observations 
 
Obs    X4     Y   Fit  SE Fit  Residual  St Resid 
  6  1.00  7606  4684     332      2922      2.13R 
 
R denotes an observation with a large standardized residual. 
 
 
Durbin-Watson statistic = 1.42502 



International Journal of Education and Research                                     Vol. 1 No. 4 April 2013 
 

21 
 

APPENDIX C 
 

Graph 1 

0

200000

400000

600000

800000

1000000

1200000

0 2000 4000 6000 8000 10000 12000 14000 16000

 
 
 

M
an

-H
ou

rs
 

Boiler Capacity 



ISSN: 2201-6333 (Print) ISSN: 2201-6740 (Online)                                                     www.ijern.com 
 

22 
 

Graph 2 
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Graph 3 
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Graph 4 
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